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Perturbative hypernetted-chain equation for mixtures: Applications to Coulomb plasma
and H21H mixtures

Hong Seok Kang
Department of Chemistry and New Materials, College of Science and Engineering, Jeonju University, Hyoja-dong, Wansan-ku,

Chonbuk, Korea 560-759

Francis H. Ree
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551

~Received 11 November 1997!

The perturbative hypernetted-chain equation for one-component systems@J. Chem. Phys.103, 9377~1995!#
has been extended to mixture systems by approximating the bridge function of a system by that of a reference
system whose repulsive range is chosen to satisfy thermodynamic consistency of partial isothermal compress-
ibilities for individual components in a mixture. Applications to strongly coupled Coulomb and Yukawa
mixtures and H1H2 mixtures show that the theory provides radial distribution functions and thermodynamic
functions that are in close agreement with exact computer-simulation data, some of which are obtained in this
work. They are often superior to or at least comparable to the best available theories in the literature.
@S1063-651X~98!13905-3#

PACS number~s!: 52.25.2b, 05.70.2a
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I. INTRODUCTION

Integral equations for the pair-correlation functions ha
been used very successfully in the study of equilibrium pr
erties of dense fluids. The present work focuses on the
turbative hypernetted-chain~PHNC! equation@1,2#, in which
the bridge function for a system of interest is replaced by t
of a reference system with a density-dependent pair po
tial, and aims toward extending our earlier work for a sing
component system to mixtures. For this, we introduce a m
sophisticated choice of the reference system, as will be
scribed in the next section.

In Sec. III we apply the present theory to plasma mixtu
interacting with either an unscreened or a screened Coul
potential to compare with the best available theory, i
Rosenfeld’s density-functional theory~DFT! @3#. The DFT
gives the internal energy within a three to five figure ac
racy of Monte Carlo data@4–6# for unscreened mixtures. W
next apply the present theory to a H21H mixture to compute
thermodynamic properties and radial distribution functio
The results are compared with Monte Carlo data and th
from another successful theory of dense fluids, i.e.,
HMSA equation of Zerah and Hansen@7,8#.

II. FORMULATIONS

The PHNC integral equation for a multicomponent m
ture employs a closure relation

Bi j ~r !5Bi j ,0~r !, ~2.1!

where Bi j (r ) and Bi j ,0(r ) denote the bridge functions be
tween speciesi and j for a system of interest and those for
reference system, respectively. The PHNC chooses the r
(l i j ) of the reference potentialVi j ,0(r ) to depend on tem-
peratureT and densityr. For a one-component system,
choice of l5min(afcc,r * ) gives reliable results. Here
571063-651X/98/57~5!/5988~5!/$15.00
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afcc(521/6/r1/3) is the nearest-neighbor distance for the fac
centered-cubic lattice andr * is the interatomic distance
whereV(r ) is at the minimum.

For a mixture,l i j can be different for a different (i , j )
pair. In this work, we choosel i j ( iÞ j ) to be additive, i.e.,
l i j 5(l i i 1l j j )/2. l i i is chosen so that the partial isotherm
compressibility](bP)/]r i , from the compressibility rela-
tion

]~bP!

]r i
512r(

j
xjE dr ci j ~r !, ~2.2!

gives the same result as that obtained by numerical diffe
tiation ](bP)/]r i of the virial equation

bP

r
512

br

6 (
i , j

xixjE dr gi j ~r !r
dVi j ~r !

dr
. ~2.3!

Hereb51/kT ~k5the Boltzmann constant! andci j (r ) is the
direct correlation function. For a plasma system with a co
pensating background of opposite charge, Eqs.~2.2! and
~2.3! need to be modified to include the background con
butions. This is done by replacingci j (r ) and gi j (r ) by
ci j (r )1bVi j (r ) andgi j (r )21, respectively.

For a givenl i j , a pair potential is divided into two parts
Namely,

if l j,r i j* ,

Vi j ,1~r !5Vi j ~l i j !2Vi j8 ~l i j !~l i j 2r !, if r<l i j ,

5Vi j ~r !, if r .l i j , ~2.4!

Vi j ,0~r !5Vi j ~r !2Vi j ,1~r !; ~2.5!
5988 © 1998 The American Physical Society
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TABLE I. Comparison of the excess internal energy for the TCP: the Monte Carlo data@4–6#, the PHNC
~this work!, and Rosenfeld’s DFT@3#. Z2 is the ionic charge of species 2 (Z151); Ge5(e2/aekT), where
ae is the electron sphere radius; andx is the mole fraction of species 2.

Z2 Ge x

bUe

Exact PHNC DFT

3 10 0.01 28.458 7460.000 11 28.4543 28.4628
10 0.02 28.919 2760.000 11 28.9152 28.934
10 0.05 210.300 5360.000 14 210.2975 210.297
10 0.1 212.60260.001 212.601 212.592
10 0.2 217.20860.001 217.207 217.201
10 0.5 231.03560.002 231.027 231.032
15 0.05 215.790 6860.000 26 215.7847 215.7850
15 0.1 219.26560.001 219.260 219.252
15 0.2 226.21260.001 226.209 226.199
15 0.5 247.06660.002 247.055 247.057
20 0.01 217.601 8860.000 26 217.5904 217.6033
20 0.05 221.318 3460.000 19 221.3105 221.3100
20 0.1 225.96360.001 225.959 225.948
20 0.2 235.26060.002 235.255 235.237
20 0.5 263.14560.002 263.137 263.126

5 10 0.01 29.204 1460.000 15 29.2022 29.2033
10 0.05 214.027 5360.000 15 214.0331 214.0081
10 0.1 220.058 4060.000 17 220.0682 220.0301
10 0.2 232.123 9960.000 23 232.1357 232.0974
10 0.5 268.339 1360.000 32 268.3421 268.3609

8 10 0.01 210.756 9860.000 18 210.7617 210.7466
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if l j>r i j* ,

Vi j ,0~r !5VS r i j*

l i j
r D 2V~r i j* !, ~2.6!

Vi j ,1~r !5Vi j ~r !2Vi j ,0~r !. ~2.7!

Equations~2.4! and ~2.5! represent a direct extension of th
method used for the one-component case@1,2# to a mixture.
In this work, we introduce an additional perturbation sche
via Eqs. ~2.6! and ~2.7! when l i j >r i j* . They ensure tha
Vi j ,0(r ) is a continuous function ofl i j at a givenr . As will
be shown below, this scheme allows the aforementio
thermodynamic consistency to be fulfilled even at low de
sity, whereafcc.r i j* . Note that this choice does not affe
calculations for purely repulsive potentials, sincer i j* occurs
at infinity.

Once the reference potential is defined,Bi j ,0(r ) is deter-
mined by solving the Ornstein-Zernike relation with Ballo
et al.’s closure relation@9#

Bi j ,0~r !5@11sg i j ,0~r !#1/s212g i j ,0~r !, ~2.8!

wheres515/8 andg i j ,0(r ) is the indirect correlation func
tion. In summary, we solve Eqs.~2.1!–~2.8! by an iterative
cycle until a self-consistent solution is obtained.

III. RESULTS AND DISCUSSION

The two-component plasma~TCP! corresponds to the
simplest model of plasma mixtures where ions with char
e

d
-

s

Z1 and Z2 ~in units of e! move in a uniform background
Parameters describing this system are the plasma coup
parameterG5e2/(kTa), Z1 , Z2 , and mole fractionx of
species 2, wherea(53/4pr)1/3 is the ion-sphere radius. An
alternative description is possible in terms ofGe

5e2/(kTae) instead ofG, whereae(53/4pre)
1/3 is the elec-

tron radius andre is the electron density.
Table I compares the excess internal energyUe calculated

from the PHNC with those from computer simulations@4–6#
and the DFT@3# for the TCP withZ151 andZ2.Z1 . The
PHNC is generally superior to the DFT atx.0.01. We also
note that the present PHNC gives better results compare
a simpler version of the theory that does not use the s
consistency criterion forl i j . For example, the use ofl11
5l125l225afcc gives bUe5268.1143 atGe510, Z255,
and x50.5, compared with Monte Carlo (5268.339 13)
and PHNC (5268.3421) data in Table I. Yet, detailed ca
culations show that deviations ofUe from those predicted by
the so-called ‘‘linear mixing rule’’@10,11# are not accurately
predicted by the refined PHNC. This is related to the fact t
the law is so accurate that the deviation from it is genera
very small, i.e., 0.06% or less. A similar situation also occ
for the DFT. Figure 1 shows that the PHNC also gives
curate partial radial distribution functionsgi j (r ), which are
at least as accurate as the DFT. See Fig. 5 of Ref.@3#.

Next, we briefly describe results of the PHNC calcu
tions for the Yukawa system, which is a more realistic mo
for plasma than the one-component plasma~OCP! or the
TCP. For a two-component Yukawa mixture composed
ions with chargesZ1 and Z2 , an interaction potential be
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5990 57HONG SEOK KANG AND FRANCIS H. REE
tween (i , j ) ions is given bybVi j (r )5ZiZjGe2kr /r , where
distancer is in units ofa. The potential energy of this sys
tem depends on five parameters:G, Z1 , Z2 , x, and k. Al-
though not shown here, the PHNC can predict the exc
internal energy of the one-component Yukawa system w
an accuracy similar to that for the OCP in the range ok
<2. This was confirmed by comparing the PHNC calcu
tions with recent Monte Carlo data of Hamaguchi and
workers@13#. In addition, we have found thatl, which sat-
isfies the self-consistency criterion, lies very close toafcc at
all k values investigated near the freezing line. Typica
differences between the two are within 5%. This is somew
unexpected in that the weakly screened Yukawa sys
freezes into the body-centered-cubic lattice@14#.

Table II gives a comparison of the potential energy b

FIG. 1. Radial distributionsgi j (r ) for an equimolar TCP mix-
ture with Z151 and Z255 at Ge510. Diamonds, circles, and
squares represent the Monte Carlo data of DeWitt, Slattery,
Chabrier@12# for the 11, 12, and 22 interactions, respectively. So
lines correspond to the PHNC.
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tween Yukawa charges (Upp) calculated from the PHNC and
the hypernetted chain approximation~HNC! for the two-
component Yukawa system. Also shown are results from
Yukawa mixing rule~YMR! @15# based on the calculation
performed on the one-component Yukawa systems using
PHNC or the HNC. HereUpp is related to the linear respons
energyU lin.resp. by

bU lin.resp.5bUpp23G
^Z&2

2k2 2
G

2
^Z2&k ~3.1!

5
3G

4p2 (
i , j

xixjZiZjE dk hi j ~k!
k2

k21k2

2
G

2
^Z2&k, ~3.2!

where the distance is in units of the ion-sphere radiusa @15#.
The YMR can be expressed in terms ofupp([bUpp) by

upp~Z1 ,Z2 ,G,x,k!5~12x!u1
pp~G1 ,k1!1xu2

pp~G2 ,k2!,
~3.3!

where ui
pp denotes the reduced potential energy betwe

Yukawa charges in the one-component system of speciei ,
and

G i5~Zi
2/Ri !G, k i5kRi . ~3.4!

Here,Ri is the solution of the coupled algebraic equation

Ri5
ZiY~kRi !

~12x!Z1Y~kR1!1xZ2Y~kR2!
~ i 51,2!, ~3.5!

and

Y~ t !5
2t3

3@et~ t21!1e2t~ t11!#
. ~3.6!

d

C at

the
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TABLE II. Potential energyUpp between Yukawa charges calculated from the PHNC and the HN
different compositions and the screening parameterk at G520, Z151, and Z253. x denotes the mole
fraction of ionic species 2. Geff is the effective coupling parameter. Also shown are the results from
Yukawa mixing rule~YMR!. PHNC-YMR denotes the data based on the YMR using the PHNC for o
component systems. A similar definition applies to HNC-YMR. See the text for more detail.

x k Geff

bUpp

PHNC PHNC-YMR HNC HNC-YMR

0.1 0.4 21.73 248.837 248.842 249.029 249.023
0.6 17.81 101.553 101.558 101.742 101.736
0.8 14.60 51.4435 51.4484 51.6277 51.6225
1.0 11.97 29.2327 29.2370 29.4107 29.4057

0.2 0.4 30.74 337.295 337.301 337.555 337.546
0.6 25.19 137.045 137.051 137.300 137.292
0.8 20.66 69.0293 69.0361 69.2779 69.2697
1.0 16.94 38.9594 38.9654 39.1990 39.1911

0.5 0.4 61.17 688.223 688.234 688.695 688.687
0.6 50.11 279.248 279.253 279.707 279.699
0.8 41.05 140.237 140.237 140.683 140.675
1.0 33.64 78.7460 78.7468 79.1764 79.1688
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TABLE III. Comparison of the compressibility factorbP/r and the excess internal energyUe of an
equimolar H1H2 mixture: Exact data~the exact data with standard deviations inside parentheses are fro
Monte Carlo simulations performed in this work using 106;23106 configurations, while values withou
standard deviations are taken from Ref.@8#!, the PHNC, and the HMSA@8#. Also shown are data on the zer
wave-vector limit of the Bhatia-Thornton structure factorScc(0) based on the PHNC.Scc(0) was divided by
that for an ideal mixture to better describe the tendency for a phase separation.x denotes the mole fraction
of H2. See the text for more detail.

T ~K! r (Å 23)

bP/r bUe

Scc~0!

~12x!xExact PHNC HMSA Exact PHNC HMSA

1000 0.002 06 1.034~7! 1.034 0.0067~1! 0.0068 0.990
0.02 1.434~1! 1.434 0.1043~1! 0.1039 0.889
0.06 3.123 3.124 3.110 0.675 0.674 0.664 0.62
0.2 16.996~6! 17.086 17.053 7.518~4! 7.540 7.538 0.137

5000 0.002 06 1.020~1! 1.020 0.008 80~9! 0.008 74 1.040
0.02 1.215~1! 1.216 0.0977~6! 0.0979 0.921
1.0 35.31 35.32 35.37 24.07 24.09 24.17 0.052

10 000 0.002 06 1.014~1! 1.014 0.007 36~6! 0.007 36 1.028
0.02 1.148~1! 1.148 0.0788~3! 0.0787 0.934
0.2 3.212 3.212 3.214 1.309 1.308 1.307 0.476
1.0 18.410~1! 18.429 18.443 12.536~2! 12.548 12.549 0.096
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Since computer-simulated data are not available for this
tem, it is difficult to assess the accuracy of the PHNC. Ho
ever, Table II shows that the YMR holds very well for bo
of the PHNC and the HNC in the strongly coupled regime.
fact, the smallest value of the effective coupling parame
Geff„5$(12x)G11xG2%e

2k
… is 11.97. We also note that de

viation of the PHNC data from that predicted by the YMR
generally negative, while the opposite is the case for
HNC.

Table III shows that the PHNC is also reliable for
H1H2 mixture interacting with Morse potentials. To te
this, we made additional Monte Carlo simulations. We n

FIG. 2. Radial distributionsgi j (r ) for an equimolar mixture of
atomic ~5species 1! and molecular~5species 2! hydrogen atT
55000 K andr51 Å23. Diamonds, circles, and squares corr
spond to the Monte Carlo data~obtained in this work! for the 11,
12, and 22 interactions, respectively. Solid lines represent
PHNC.
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that the present theory is slightly superior to the HMSA@8#
~the potential parameters used in this work are the sam
those in Ref.@8#!. Figures 2 and 3 render further support
the good performance of the PHNC. AtT55000 K andr
51 Å23, the first peaks in the H2-H2 radial distribution
function g22(r ) are 1.79860.005, 1.802, 1.69, and 1.72 fo
the Monte Carlo data obtained in this work, the PHNC, a
the one- and two-parameter HMSA, respectively.~See Fig.
2.! However, the corresponding peak for the H-H radial d
tribution function g11(r ) is not accurately predicted.~The
two-parameter HMSA determines parameters in ‘‘switchi
functions’’ by imposing a condition of thermodynamic co
sistency between two partial compressibilities similar to
one used here. The switching functions mix the soft me
spherical approximation at smallr and the HNC closure a

e
FIG. 3. Radial distributionsgi j (r ) for an equimolar mixture of

atomic ~5species 1! and molecular~5species 2! hydrogen atT
510 000 K andr51 Å23. Notations are the same as in Fig. 2.
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5992 57HONG SEOK KANG AND FRANCIS H. REE
larger . On the one hand, the one-parameter HMSA empl
a single switching function whose parameter is determi
from the consistency of the total compressibility.! Note that
the system has a very strong tendency for heterocoordina
at this temperature and density. This can be seen by the
wave-vector limit of the normalized Bhatia-Thornton~BT!
structure factor@16# Scc(0)/x(12x) predicted by the PHNC
The termx(12x) predicted by the PHNC. The termx(1
2x) in the denominator describes the contribution by
ideal mixture, wherex512x1 is the mole fraction of the
species 2. The BT structure factor is defined by

Scc~k!5N^C* ~k!C~k!&, ~3.7!

where

C~k!5@x2N1~k!2x1N2~k!#/N, ~3.8!

Ni~k!5(
j

Ni

exp~ ik•Rj !. ~3.9!

Here, N5N11N2 is the total number of particles, an
Scc(0) is related to the Gibbs free energyG of the system by
Scc(0)5kT/(]2G/]x2)P,T,N . Therefore,Scc(0);0 implies
that the system has a strong tendency for compound for
tion between unlike pairs. We observe that partial radial d
tribution functions calculated from the PHNC are in bet
agreement with Monte Carlo data whenScc(0) becomes
ys
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larger. Figure 3 shows that this is actually the case wheT
510 000 K andr51.0 Å23. Table III also shows that the
PHNC actually yields a solution~which satisfies the thermo
dynamic consistency! at all temperatures and densities inve
tigated, even at a low density~r50.002 06 and 0.02 Å23!,
for which afcc.r i j* for all ( i , j ) pairs. This is not possible
without the use ofVi j ,0(r ) given in Eq.~2.6!.

IV. CONCLUSION

We have extended the perturbative hypernetted-ch
equation recently developed for the single-component s
tems to mixtures and have successfully applied it to t
entirely different mixtures, i.e., plasma mixtures and H1H2
mixtures. Furthermore, we have shown that the new PH
is applicable to mixtures at wide temperature and dens
We expect that the PHNC will be useful for the study
liquid metals and alloys when combined with a suitab
pseudopotential theory.
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