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Perturbative hypernetted-chain equation for mixtures: Applications to Coulomb plasma
and H,+H mixtures
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The perturbative hypernetted-chain equation for one-component syste@isem. Phys103 9377(1995]
has been extended to mixture systems by approximating the bridge function of a system by that of a reference
system whose repulsive range is chosen to satisfy thermodynamic consistency of partial isothermal compress-
ibilities for individual components in a mixture. Applications to strongly coupled Coulomb and Yukawa
mixtures and H-H, mixtures show that the theory provides radial distribution functions and thermodynamic
functions that are in close agreement with exact computer-simulation data, some of which are obtained in this
work. They are often superior to or at least comparable to the best available theories in the literature.
[S1063-651%98)13905-3

PACS numbes): 52.25-b, 05.70-a

. INTRODUCTION ar(= 2% p'3) is the nearest-neighbor distance for the face-
centered-cubic lattice and* is the interatomic distance
Integral equations for the pair-correlation functions havewhereV(r) is at the minimum.
been used very successfully in the study of equilibrium prop- For a mixture,\;; can be different for a differenti (j)
erties of dense fluids. The present work focuses on the pepair. In this work, we choosk;; (i#]) to be additive, i.e.,
turbative hypernetted-chai®HNC) equation(1,2], in which .= (\;;+X;;)/2. \;; is chosen so that the partial isothermal

the bridge function for a system of interest is replaced by tha&ompressibility&(,BP)/ﬁpi , from the compressibility rela-
of a reference system with a density-dependent pair potenRign

tial, and aims toward extending our earlier work for a single-
component system to mixtures. For this, we introduce a more J(BP)
sophisticated choice of the reference system, as will be de- =1-p>, X.f dr ¢ (r), (2.2
scribed in the next section. Ipi T .

In Sec. Il we apply the present theory to plasma mixtures
interaCting with either an unscreened or a screened COUIO”@VeS the same result as that obtained by numerical differen-
potential to compare with the best available theory, i.e.gation 9(8P)/dp; of the virial equation
Rosenfeld’s density-functional theoFT) [3]. The DFT
gives the internal energy within a three to five figure accu-
racy of Monte Carlo datp4—6] for unscreened mixtures. We BP_ 1— e > X.X.f dr g; (r)r
next apply the present theory to @-HH mixture to compute 6 77 !
thermodynamic properties and radial distribution functions.

The results are compared with Monte Carlo data and thosgere g=1/kT (k=the Boltzmann constanandc;;(r) is the
from another successful theory of dense fluids, i.e., thgjirect correlation function. For a plasma system with a com-

dVi;(r)
dr

2.3

HMSA equation of Zerah and Hansgn,8]. pensating background of opposite charge, E@s2 and
(2.3) need to be modified to include the background contri-
Il. FORMULATIONS butions. This is done by replacing;;(r) and g;;(r) by

Cij(r)+ BVij(r) andg;;(r)—1, respectively.

The PHNC integral equation for a multicomponent mix- For a given\;;, a pair potential is divided into two parts.

ture employs a closure relation

Namely,
Bij(r)=Bij o(r), 21 I Aj<ri,
where Bj;(r) and Bj; o(r) denote the bridge functions be- Vi a(1)=Viy (N = Vi (N (Vg = 1), it r=x,,

tween species andj for a system of interest and those for a
reference system, respectively. The PHNC chooses the range

(\jj) of the reference potential;; o(r) to depend on tem- =Vi(r), i >N, 24
peratureT and densityp. For a one-component system, a
choice of N=min(a;.r*) gives reliable results. Here, Vij o) =Vii(r) = Vi 4(r); (2.5
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TABLE I. Comparison of the excess internal energy for the TCP: the Monte Carld4laé) the PHNC
(this work), and Rosenfeld’s DFJ3].  Z, is the ionic charge of species Z{=1); T .=(e?/akT), where
a. is the electron sphere radius; axds the mole fraction of species 2.

BU°

Z, re X Exact PHNC DFT

3 10 0.01 —8.458 74:0.000 11 —8.4543 —8.4628
10 0.02 —8.919 270.000 11 —8.9152 —8.934
10 0.05 —10.300 53-0.000 14 —10.2975 —10.297
10 0.1 —12.602:0.001 —12.601 —12.592
10 0.2 —17.208:0.001 —17.207 —17.201
10 0.5 —31.035:£0.002 —31.027 —31.032
15 0.05 —15.790 68:-0.000 26 —15.7847 —15.7850
15 0.1 —19.265-0.001 —19.260 —19.252
15 0.2 —26.212-0.001 —26.209 —26.199
15 0.5 —47.066:0.002 —47.055 —47.057
20 0.01 —17.601 88-0.000 26 —17.5904 —17.6033
20 0.05 —21.318 34-0.000 19 —21.3105 —21.3100
20 0.1 —25.963:0.001 —25.959 —25.948
20 0.2 —35.26G:0.002 —35.255 —35.237
20 0.5 —63.145£0.002 —63.137 —63.126

5 10 0.01 —9.204 14£0.000 15 —9.2022 —9.2033
10 0.05 —14.027 53-0.000 15 —14.0331 —14.0081
10 0.1 —20.058 43-0.000 17 —20.0682 —20.0301
10 0.2 —32.123 99-0.000 23 —32.1357 —32.0974
10 0.5 —68.339 13-0.000 32 —68.3421 —68.3609

8 10 0.01 —10.756 98:0.000 18 —10.7617 —10.7466

if Nj=rf, Z, and Z, (in units of ) move in a uniform background.

Parameters describing this system are the plasma coupling
parameterl’ =e?/(kTa), Z;, Z,, and mole fractionx of
species 2, whera(=3/4mp)*? is the ion-sphere radius. An
alternative description is possible in terms df,
Vij a(r) = Vi (r) = Vij o(r). (2.7 =e?/(kTa,) instead of", wherea (= 3/4mp,)*3is the elec-
) , i tron radius andg, is the electron density.
Equations(2.4) and (2.5 represent a direct extension of the Table | compares the excess internal endy§ycalculated

s e et ] o St the PHNC it s o computer Smuitans
) ' i = >7,.
via Egs.(2.6) and (2.7) when )\ijzri’j . They ensure that and the DFT[3] for the TCP withZ,=1 andZ,>Z,. The

. . . . . PHNC i I i he DFT .01. We al
Vij o(r) is a continuous function of;; at a givenr. As will C is generally superior to the ar0.0 € aiso

be shown below, this scheme allows the aforementioneHOte that the present PHNC gives better results compared to

thermodynamic consistency to be fulfilled even at low den? simpler version of the theory that does not use the self-

sity, whereag,.>r}; . Note that this choice does not affect consistency criterion foh ;. For example, the use ofy,

) . . . =N\15=N\yy= Qs gives BUS=—68.1143 atl' =10, Z,=5,
calculations for purely repulsive potentials, sn‘r@occurs and x=0.5, compared with Monte Carlo=(— 68.339 13)

at 'Sf'n'tyt'h f tential is defi is det and PHNC & —68.3421) data in Table I. Yet, detailed cal-

) r&cg elrg er;ahnc%po ter) |aZ IS 'ke mﬁldj%o(r) I'Sth Eeﬁ_ culations show that deviations bff from those predicted by
mt'n?, Iyso vmgl t'e S;ns ein-zernike refation wi allon€ ine so-called “linear mixing rule’[10,1]] are not accurately
etal’s closure relatiori9] predicted by the refined PHNC. This is related to the fact that

B o(r)=[1+5yi (1) ]¥—1— . (1), 28 the law is so accurate that the deviation from it is generally

o) =[1+87;.1)] Vijol 1) 28 very small, i.e., 0.06% or less. A similar situation also occurs

wheres=15/8 andy;; (r) is the indirect correlation func- for the DFT. Figure 1 shows that the PHNC also gives ac-
tion. In summary, we solve Eqszj_)_(zg) by an iterative  curate partlal radial distribution fUﬂCtIO@j(r), which are

cycle until a self-consistent solution is obtained. at least as accurate as the DFT. See Fig. 5 of Rgf.
Next, we briefly describe results of the PHNC calcula-

tions for the Yukawa system, which is a more realistic model

for plasma than the one-component plas(@CP or the
The two-component plasmé&rCP) corresponds to the TCP. For a two-component Yukawa mixture composed of

simplest model of plasma mixtures where ions with chargesons with chargesZ, and Z,, an interaction potential be-

*

ri
Vij,o(r)=V(#r)—V(rﬁ), (2.6)
ij

Ill. RESULTS AND DISCUSSION
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3 ‘ T ‘ ' tween Yukawa charge4JfP) calculated from the PHNC and
the hypernetted chain approximatighiNC) for the two-

8 component Yukawa system. Also shown are results from the
Yukawa mixing rule(YMR) [15] based on the calculations
performed on the one-component Yukawa systems using the
PHNC or the HNC. Her&J PP is related to the linear response

energyU lin.resp. by
(> T _,
IBUIin.resp.:ﬁUpp_‘?’F ZZ_ E <Z >K (3.1)

3r k2
=2 2] xiszizjf dk (k) (o

r 2
— 5 (2, (3.2

r/a

FIG. 1. Radial distributiong;;(r) for an equimolar TCP mix-
ture with Z,=1 and Z,=5 at I';.=10. Diamonds, circles, and
squares represent the Monte Carlo data of DeWitt, Slattery, an
Chabrief{12] for the 11, 12, and 22 interactions, respectively. Solid pp 1 pp pp
lines correspond to the PHNC. UPH(Z1, 22,1 %, k) = (1= X)UT (T k) XU (F21K2(?3’ 3

where the distance is in units of the ion-sphere radi{i$5].
Jhe YMR can be expressed in termsuf(=BUPF) by

tween (,j) ions is given byBV;;(r)=2;Zjl'e”*'/r, where  where uP? denotes the reduced potential energy between
distancer is in units ofa. The potential energy of this sys- Yukawa charges in the one-component system of spégies
tem depends on five parametels:Z;, Z,, X, and «. Al- and
though not shown here, the PHNC can predict the excess
internal energy of the one-component Yukawa system with Fi=(Zi2/Ri)F, K= kR;. (3.9
an accuracy similar to that for the OCP in the rangexof
<2. This was confirmed by comparing the PHNC calcula-Here,R; is the solution of the coupled algebraic equations
tions with recent Monte Carlo data of Hamaguchi and co-
workers[13]. In addition, we have found that, which sat- R —
isfies the self-consistency criterion, lies very closeajq at !
all x values investigated near the freezing line. Typically,
differences between the two are within 5%. This is somewha@nd
unexpected in that the weakly screened Yukawa system 3
freezes into the body-centered-cubic lattidd]. Y(t)= 2t

Table Il gives a comparison of the potential energy be- J[el(t—1)+e (t+1)]°

ZiY(KRi)
(1—X)Z,Y(xRy) + XZ,Y(kR,)

(i=1,2, (3.5

(3.6

TABLE II. Potential energyUPP between Yukawa charges calculated from the PHNC and the HNC at
different compositions and the screening parametext I'=20, Z,=1, andZ,=3. x denotes the mole
fraction of ionic species 2. T is the effective coupling parameter. Also shown are the results from the
Yukawa mixing rule(YMR). PHNC-YMR denotes the data based on the YMR using the PHNC for one-
component systems. A similar definition applies to HNC-YMR. See the text for more detail.

BUPP
X K et PHNC PHNC-YMR HNC HNC-YMR
0.1 0.4 21.73 248.837 248.842 249.029 249.023
0.6 17.81 101.553 101.558 101.742 101.736
0.8 14.60 51.4435 51.4484 51.6277 51.6225
1.0 11.97 29.2327 29.2370 29.4107 29.4057
0.2 0.4 30.74 337.295 337.301 337.555 337.546
0.6 25.19 137.045 137.051 137.300 137.292
0.8 20.66 69.0293 69.0361 69.2779 69.2697
1.0 16.94 38.9594 38.9654 39.1990 39.1911
0.5 0.4 61.17 688.223 688.234 688.695 688.687
0.6 50.11 279.248 279.253 279.707 279.699
0.8 41.05 140.237 140.237 140.683 140.675

1.0 33.64 78.7460 78.7468 79.1764 79.1688
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TABLE lll. Comparison of the compressibility factqgP/p and the excess internal energ)f of an
equimolar H+-H, mixture: Exact datéthe exact data with standard deviations inside parentheses are from the
Monte Carlo simulations performed in this work using®4®x 10° configurations, while values without
standard deviations are taken from He&f), the PHNC, and the HMSA8]. Also shown are data on the zero
wave-vector limit of the Bhatia-Thornton structure facBg(0) based on the PHNG,.(0) was divided by
that for an ideal mixture to better describe the tendency for a phase sepaxatienotes the mole fraction
of H,. See the text for more detail.

e
BPIp pY $.40)
TK)  p(A™®  Exact PHNC HMSA Exact PHNC  HMSA (1-x)x
1000 0.002 06 1.03%) 1.034 0.00671) 0.0068 0.990
0.02 1.4341) 1.434 0.10481) 0.1039 0.889
0.06 3.123 3.124 3.110 0.675 0.674 0.664 0.620
0.2 16.9966) 17.086 17.053 7.518) 7.540 7.538 0.137
5000 0.002 06 1.02a) 1.020 0.008 8(®) 0.008 74 1.040
0.02 1.21%1) 1.216 0.0977) 0.0979 0.921
1.0 35.31 35.32 35.37 24.07 24.09 2417 0.052
10 000 0.002 06 1.013) 1.014 0.007 36®) 0.007 36 1.028
0.02 1.1481)  1.148 0.07883) 0.0787 0.934
0.2 3.212 3.212 3.214 1.309 1.308 1.307 0.476
1.0 18.4101) 18.429 18.443 12.538) 12.548 12.549 0.096

Since computer-simulated data are not available for this syghat the present theory is slightly superior to the HMEA
tem, it is difficult to assess the accuracy of the PHNC. How-(the potential parameters used in this work are the same as
ever, Table Il shows that the YMR holds very well for both those in Ref[8]). Figures 2 and 3 render further support to
of the PHNC and the HNC in the strongly coupled regime. Inthe good performance of the PHNC. At=5000 K andp
fact, the smallest value of the effective coupling parameter=1 A~3, the first peaks in the #H, radial distribution
Feg(={(1—x)'1+xI',}e™ ") is 11.97. We also note that de- function g,,(r) are 1.798 0.005, 1.802, 1.69, and 1.72 for
viation of the PHNC data from that predicted by the YMR is the Monte Carlo data obtained in this work, the PHNC, and
generally negative, while the opposite is the case for thehe one- and two-parameter HMSA, respectivélyee Fig.

HNC.

2.) However, the corresponding peak for the H-H radial dis-

Table Il shows that the PHNC is also reliable for a tribution functiongq,(r) is not accurately predictedThe
H+H, mixture interacting with Morse potentials. To test two-parameter HMSA determines parameters in “switching
this, we made additional Monte Carlo simulations. We notefunctions” by imposing a condition of thermodynamic con-

2.0

0.4—

0.0

0.0

/e

FIG. 2. Radial distributiong);;(r) for an equimolar mixture of
atomic (=species 1 and moleculan=species 2 hydrogen atT
=5000K andp=1A~3. Diamonds, circles, and squares corre-
spond to the Monte Carlo databtained in this workfor the 11,
12, and 22 interactions, respectively. Solid lines represent thatomic (=species 1 and molecular(=species 2 hydrogen atT

PHNC.

sistency between two partial compressibilities similar to the
one used here. The switching functions mix the soft mean-
spherical approximation at smalland the HNC closure at

1.6 T T T T T T

r/rs

FIG. 3. Radial distributiongj;(r) for an equimolar mixture of

=10 000 K andp=1 A~3. Notations are the same as in Fig. 2.
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larger. On the one hand, the one-parameter HMSA employsarger. Figure 3 shows that this is actually the case when
a single switching function whose parameter is determined=10 000 K andp=1.0 A=3. Table Ill also shows that the
from the consistency of the total compressibilitilote that PHNC actually yields a solutiofwhich satisfies the thermo-
the system has a very strong tendency for heterocoordinaticaiynamic consistengyat all temperatures and densities inves-
at this temperature and density. This can be seen by the zetigated, even at a low density=0.002 06 and 0.02 A3),
wave-vector limit of the normalized Bhatia-Thornt¢BT)  for which ay.>r} for all (i,j) pairs. This is not possible
structure factof16] S..(0)/x(1—x) predicted by the PHNC. without the use oW;; o(r) given in Eq.(2.6).

The termx(1—x) predicted by the PHNC. The term(1
—X) in the denominator describes the contribution by an
ideal mixture, wherex=1—Xx; is the mole fraction of the

species 2. The BT structure factor is defined by We have extended the perturbative hypernetted-chain
equation recently developed for the single-component sys-

IV. CONCLUSION

— *
Sec(k)=N(C* (K)C(K)), @7 tems to mixtures and have successfully applied it to two
where entirely different mixtures, i.e., plasma mixtures and- H,
mixtures. Furthermore, we have shown that the new PHNC
C(k)=[x5N;(k) —x;N>(k)]/N, (3.8 is applicable to mixtures at wide temperature and density.
We expect that the PHNC will be useful for the study of
Ni . liquid metals and alloys when combined with a suitable
Ni(k)IEj: expik-R)). (3.9  pseudopotential theory.
Here, N=N;+N, is the total number of particles, and
S..(0) is related to the Gibbs free ener@yof the system by ACKNOWLEDGMENTS
Sec(0)=KT/(9*G/9x%)p 1. Therefore,S.(0)~0 implies The work of H. S. Kang was supported by a grant from

that the system has a strong tendency for compound formaleonju University. The work of Francis H. Ree was done
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